Enhancing Pavement Performance and Economy through Crumb Rubber Modified Bitumen: A Sustainable Engineering Approach

Authors

  • A.F.S. Ahad Rahman Khan Roads & Highway Department (RHD), Bangladesh Author
  • Nafisa Tabassum Department of Civil Engineering, United International University, Dhaka 1212, Bangladesh Author

DOI:

https://doi.org/10.70028/sgm.v2i1.39

Keywords:

Sustainable Pavement Materials, Rheological Properties, Marshall Mix Design, Crumb Rubber , Modified Bitumen

Abstract

The reuse of waste materials in infrastructure is a growing focus in materials engineering for enhancing both performance and sustainability. This study modified a conventional 60/70 penetration grade bitumen with crumb rubber derived from waste tires. Crumb rubber was incorporated in varying proportions (4%, 8%, 12%, 16% by weight of bitumen) using a controlled wet process at elevated temperature. The modified binders and resultant asphalt mixes were then evaluated through standard laboratory tests (penetration, softening point, ductility, flash/fire point) and Marshall mix design procedures. Results indicate that a 10% crumb rubber content is optimal, yielding significant improvements in binder properties and mix performance. The 10% Crumb Rubber Modified Bitumen (CRMB) exhibited a 25% reduction in penetration and 50% reduction in ductility (indicating increased stiffness), along with a 10–12% increase in softening, flash, and fire points, signifying enhanced thermal stability and safety. Marshall stability of the asphalt mix improved by about 25% with CRMB, while the optimum binder content was 0.6% lower than that of the control mix, reflecting more efficient binder usage. CRMB also showed superior viscoelastic behavior and a higher fatigue life compared to the unmodified binder, indicating better long-term performance under cyclic loading. Economically, the use of CRMB is advantageous: approximately 8% lower binder material cost was observed for a typical pavement section, owing to reduced bitumen requirements and the substitution of cheaper recycled rubber. These findings demonstrate that incorporating waste tire rubber can transform conventional bitumen into a more durable, thermally stable, and cost-effective paving material, contributing to sustainable infrastructure development.

Downloads

Download data is not yet available.

References

B. Adhikari, S. Maiti, and D. De, “Reclamation and recycling of waste rubber,” Prog. Polym. Sci., vol. 25, no. 7, pp. 909–948, 2010. doi: http://dx.doi.org/10.1016/j.progpolymsci.2010.02.001

B. S. Thomas and R. C. Gupta, “A comprehensive review on the applications of waste tire rubber in cement concrete,” Renew. Sustain. Energy Rev., vol. 54, pp. 1323–1333, 2016. doi: http://dx.doi.org/10.1016/j.rser.2015.10.092

N. S. Mashaan, A. H. Ali, M. R. Karim, and M. Abdelaziz, “A review on using crumb rubber in reinforcement of asphalt pavement,” Sci. Res. Essays, vol. 8, no. 5, pp. 195–204, 2013. doi: http://dx.doi.org/10.5897/SRE12.579

M. Ameri and M. Shahabadi, “Laboratory evaluation of the effect of crumb rubber on the performance of SMA mixtures,” Constr. Build. Mater., vol. 30, pp. 561–566, 2012. doi: http://dx.doi.org/10.1016/j.conbuildmat.2011.12.025

D. Lo Presti, “Recycled tyre rubber modified bitumens for road asphalt mixtures: A literature review,” Constr. Build. Mater., vol. 49, pp. 863–881, 2013. doi: http://dx.doi.org/10.1016/j.conbuildmat.2013.09.007

H. Yao et al., “Rheological properties and chemical analysis of nanoclay and carbon microfiber modified asphalt with Fourier transform infrared spectroscopy,” Constr. Build. Mater., vol. 38, pp. 327–337, 2013. doi: http://dx.doi.org/10.1016/j.conbuildmat.2012.08.041

V. Gunalaan and M. Kanapathy, “Performance of rubberized asphalt in road construction,” ARPN J. Eng. Appl. Sci., vol. 8, no. 16, pp. 1326–1331, 2013

F. Xiao, S. N. Amirkhanian, J. Shen, and B. Putman, “Influences of crumb rubber size and type on reclaimed asphalt pavement (RAP) mixtures,” Constr. Build. Mater., vol. 24, no. 6, pp. 1021–1030, 2010. doi: http://dx.doi.org/10.1016/j.conbuildmat.2009.11.003

G. D. Airey, “Rheological properties of styrene butadiene styrene polymer modified road bitumens,” Fuel, vol. 82, no. 14, pp. 1709–1719, 2011. doi: http://dx.doi.org/10.1016/S0016-2361(03)00123-3

L. Sun, J. Wang, and Y. Lv, “Low temperature performance of crumb rubber modified asphalt,” Adv. Mater. Res., vols. 919–921, pp. 1359–1362, 2014. doi: http://dx.doi.org/10.4028/www.scientific.net/AMR.919-921.1359

N. R. Nair, K. P. Biligiri, and A. Veeraragavan, “Laboratory evaluation of crumb rubber modified bituminous concrete mixes,” Procedia - Soc. Behav. Sci., vol. 104, pp. 1059–1068, 2013. doi: http://dx.doi.org/10.1016/j.sbspro.2013.11.207

R. Jamshed and M. Khan, “Performance evaluation of asphalt binders modified with recycled crumb rubber and waste plastic,” Int. J. Pavement Eng., vol. 20, no. 12, pp. 1463–1473, 2018. doi: http://dx.doi.org/10.1080/10298436.2018.1439980

J. R. M. Oliveira and P. A. A. Pereira, “Assessment of permanent deformation of recycled rubber asphalt mixtures using uniaxial repeated loading tests,” Constr. Build. Mater., vol. 30, pp. 489–495, 2012. doi: http://dx.doi.org/10.1016/j.conbuildmat.2011.11.008

B. Sengoz, A. Topal, and H. Akyemenci, “Application of waste tire rubber in asphalt pavement,” Constr. Build. Mater., vol. 36, pp. 218–225, 2013. doi: http://dx.doi.org/10.1016/j.conbuildmat.2012.04.009

H. Ali and N. S. Mashaan, “State-of-the-art review on the effect of crumb rubber on the characteristics and performance of asphalt mixtures,” Mater. Today Proc., vol. 46, no. 13, pp. 6766–6774, 2021. doi: http://dx.doi.org/10.1016/j.matpr.2020.12.1042

H. Wang, X. Liu, P. Apostolidis, and A. Scarpas, “Experimental investigation of crumb rubber modified bitumen: Influence of particle size and blending temperature,” Constr. Build. Mater., vol. 167, pp. 494–505, 2018. doi: http://dx.doi.org/10.1016/j.conbuildmat.2018.02.019

S. C. Huang and T. D. White, “Dynamic properties of asphalt mixtures containing waste rubber,” Transp. Res. Rec., vol. 1530, pp. 28–36, 2012

M. Jony, S. W. Haider, and M. M. Rahman, “A comparative study on performance of polymer modified bitumen and CRMB in flexible pavements,” J. Mater. Civ. Eng., vol. 29, no. 9, p. 04017151, 2017. doi: http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0001952

B. J. Putman and S. N. Amirkhanian, “Utilization of waste materials in asphalt pavements,” Resour. Conserv. Recycl., vol. 55, no. 11, pp. 1072–1081, 2011. doi: http://dx.doi.org/10.1016/j.resconrec.2011.05.001

B. R. Anupam, A. Scarpas, and C. Kasbergen, “Evaluating long-term performance of modified bitumen using wheel tracking test,” Constr. Build. Mater., vol. 66, pp. 442–449, 2014. doi: http://dx.doi.org/10.1016/j.conbuildmat.2014.05.066.21

X. Lu and U. Isacsson, “Effect of ageing on bitumen chemistry and rheology,” Constr. Build. Mater., vol. 14, no. 3, pp. 151–159, 2010. doi: http://dx.doi.org/10.1016/S0950-0618(01)00033-2

M. Liang, X. Xin, W. Fan, and S. Zhou, “Rheological characterization of rubberized asphalt binders containing warm-mix additives,” Constr. Build. Mater., vol. 98, pp. 172–181, 2015. doi: http://dx.doi.org/10.1016/j.conbuildmat.2015.08.104

B. Choubane, G. Page, and J. A. Musselman, “Field evaluation of crumb-rubber modified hot-mix asphalt pavement,” Transp. Res. Rec., vol. 1681, no. 1, pp. 10–16, 2014.

S. Khosravifar, A. Kavussi, and A. Ghanbari, “Laboratory investigation on mechanical properties of rubberized asphalt,” Constr. Build. Mater., vol. 157, pp. 59–67, 2017. doi: http://dx.doi.org/10.1016/j.conbuildmat.2017.09.086

S. A. Farhan and M. Rafiq, “Performance evaluation of sustainable asphalt mixtures incorporating waste rubber and reclaimed asphalt pavement,” J. Clean. Prod., vol. 333, p. 130191, 2022. doi: http://dx.doi.org/10.1016/j.jclepro.2021.130191

G. D. Airey, “Rheological evaluation of ethylene vinyl acetate polymer modified bitumens,” Constr. Build. Mater., vol. 17, no. 5, pp. 247–254, 2003. doi: http://dx.doi.org/10.1016/S0950-0618(03)00038-4

M. Abdelrahman and S. H. Carpenter, “Laboratory investigation of the changes in asphalt-rubber binder properties with aging,” Transp. Res. Rec., vol. 1661, no. 1, pp. 54–62, 1999. doi: http://dx.doi.org/10.3141/1661-07

Bangladesh Bureau of Statistics (BBS), Statistical Yearbook of Bangladesh, Ministry of Planning, Government of the People’s Republic of Bangladesh, 2008.

M. M. Hasan, M. M. Rahman, and M. R. Alam, “Crumb rubber modified bitumen—Road to the future in Bangladesh,” in Proc. Int. Conf. Eng. Res. Educ. (ICERE 2018), Shahjalal Univ. of Science & Tech., Sylhet, 2018.

R. Shankar, “Use of waste rubber tyre in flexible pavement,” Int. J. Appl. Innov. Eng. Manag., vol. 2, no. 7, pp. 108–110, 2009.

C. Thodesen, G. D. Airey, and J. R. A. Grenfell, “Binder rheology and mix performance of crumb rubber modified asphalt pavements,” Road Mater. Pavement Des., vol. 12, no. 1, pp. 1–22, 2011. doi: http://dx.doi.org/10.1080/14680629.2011.9698289

Z. Dong, B. Huang, X. Shu, and M. Woods, “Evaluation of effects of crumb rubber particle size and content on properties of asphalt binder,” Constr. Build. Mater., vol. 46, pp. 1–7, 2013. doi: http://dx.doi.org/10.1016/j.conbuildmat.2013.04.026

M. U. Arshid, “Performance and Comparison of Crumb Rubber Modified and Conventional Mixes under Varying Temperature and Stress Levels,” Res. Gate, 2017. [Online]. Available: https://www.researchgate.net/publication/319181701

L. Gungat, N. A. Ispal, and K. T. J. Koh, “Investigation on the Barriers of Crumb Rubber Usage for Roads Construction: Case Study at Sabah,” Res. Gate, 2022. [Online]. Available: https://www.researchgate.net/publication/358806962

F. Pérez and A. Martínez, “Effect of rubber modified bitumen on fatigue life of dense graded mixtures,” Mater. Struct., vol. 38, pp. 121–126, 2005. doi: http://dx.doi.org/10.1617/14064

Y. Yildirim, “Polymer modified asphalt binders,” Constr. Build. Mater., vol. 21, no. 1, pp. 66–72, 2007. doi: http://dx.doi.org/10.1016/j.conbuildmat.2005.07.007

D. Lo Presti, “Recycled tyre rubber modified bitumens for road asphalt mixtures: A literature review,” Constr. Build. Mater., vol. 49, pp. 863–881, 2013. doi: http://dx.doi.org/10.1016/j.conbuildmat.2013.09.007

G. B. Way, K. E. Kaloush, and K. P. Biligiri, “Crumb rubber modified asphalt concrete (CRMAC) field performance,” Rubber Pavements Assoc., 2011.

Downloads

Published

2025-05-30

Issue

Section

Articles

How to Cite

Enhancing Pavement Performance and Economy through Crumb Rubber Modified Bitumen: A Sustainable Engineering Approach. (2025). Smart and Green Materials, 2(1), Pp. 47-61. https://doi.org/10.70028/sgm.v2i1.39

Similar Articles

1-10 of 17

You may also start an advanced similarity search for this article.