Integrating Flood Risk Management into Development Projects: A Conceptual Framework for Resilient Urban Planning
DOI:
https://doi.org/10.70028/dcea.v2i2.68Keywords:
Development Projects, Flood Risk Management (FRM), Conceptual Framework, Project Lifecycle Theory, Urban Development ResilienceAbstract
Flood risk is an increasingly critical concern in urban development as the frequency and severity of floods escalate due to climate change and intensified economic activities. Despite extensive studies on flood risk management (FRM), a significant gap persists in practical frameworks that systematically integrate FRM principles across the entire lifecycle of development projects. To address this gap, this study conducted a scoping review of 27 peer-reviewed articles published between 2014 and 2024, retrieved from Scopus, ScienceDirect, and Google Scholar databases. Using a thematic analysis approach, four major themes were identified: (1) the risk–hazard model, (2) risk assessment theory, (3) project lifecycle theory, and (4) risk management theory. These themes were synthesized to develop a unified conceptual framework that embeds FRM throughout project planning, design, implementation, and operation. The proposed framework emphasizes early risk identification, continuous stakeholder engagement, adaptive management, and interdisciplinary collaboration, enabling proactive integration of FRM into development processes. This novel approach aligns flood resilience with broader urban sustainability and planning objectives, offering a practical tool for policymakers, project managers, and urban planners. Future research should focus on empirical validation and contextual adaptation of the framework across diverse socio-economic and geographical settings to enhance its global applicability.
Downloads
References
IPCC, Summary for Policymakers Sixth Assessment Report (WG3), no. 1. 2022. [Online]. Available: https://www.ipcc.ch/report/ar6/wg2/
J. Rehman, O. Sohaib, M. Asif, and B. Pradhan, “Applying systems thinking to flood disaster management for a sustainable development,” Int. J. Disaster Risk Reduct., vol. 36, p. 101101, 2019, doi: http://dx.doi.org/10.1016/j.ijdrr.2019.101101
E. Koks et al., “Regional disaster impact analysis: comparing Input-Output and Computable General Equilibrium models,” Nat. Hazards Earth Syst. Sci., vol. 16, pp. 1911–1924, 2015, doi: http://dx.doi.org/10.5194/NHESS-16-1911-2016
P. Sayers et al., “Towards adaptive asset management in flood risk management: A policy framework,” Water Secur., vol. 12, no. March, 2021, doi: http://dx.doi.org/10.1016/j.wasec.2021.100085
C. Zevenbergen, A. Cashman, N. Evelpidou, E. Pasche, S. Garvin, and R. Ashley, Urban flood disaster managemen, no. 1047. 2010. doi: http://dx.doi.org/10.1016/j.proeng.2012.01.123
K. Feng, N. Lin, R. E. Kopp, S. Xian, and M. Oppenheimer, “Reinforcement learning-based adaptive strategies for climate change adaptation : An application for flood risk management,” 2024.
L. Dillenardt, P. Bubeck, P. Hudson, B. Wutzler, and A. H. Thieken, “Property-level adaptation to pluvial flooding: An analysis of individual behaviour and risk communication material,” Mitig. Adapt. Strateg. Glob. Chang., vol. 29, no. 6, pp. 1–26, 2024, doi: http://dx.doi.org/10.1007/s11027-024-10148-y
V. Bell et al., “Flood Impacts across Scales: towards an integrated multi-scale approach for Malaysia,” p. null-null, 2021, doi: http://dx.doi.org/10.3311/floodrisk2020.9.6
C. F. Durach, J. Kembro, and A. Wieland, “A New Paradigm for Systematic Literature Reviews in Supply Chain Management,” J. Supply Chain Manag., vol. 53, no. 4, pp. 67–85, 2017, doi: http://dx.doi.org/10.1111/jscm.12145
Barbara Kitchenham and S. M. Charters, “Guidelines for performing Systematic Literature Reviews in Software Engineering,” 2007. doi: http://dx.doi.org/10.1541/ieejias.126.589
E. Linares-Espinós et al., “Methodology of a systematic review,” Actas Urológicas Españolas (English Ed., vol. 42, no. 8, pp. 499–506, 2018, doi: http://dx.doi.org/10.1016/j.acuroe.2018.07.002
V. Braun and V. Clarke, “Qualitative Research in Psychology Using thematic analysis in psychology Using thematic analysis in psychology,” Qual. Res. Psychol., vol. 3, no. 2, pp. 77–101, 2006, [Online]. Available: http://www.tandfonline.com/action/journalInformation?journalCode=uqrp20%5Cnhttp://www.tandfonline.com/action/journalInformation?journalCode=uqrp20
S. K. Abid, N. Sulaiman, C. S. Wei, and U. Nazir, “Flood vulnerability and resilience: Exploring the factors that influence flooding in Sarawak,” IOP Conf. Ser. Earth Environ. Sci., vol. 802, no. 1, 2021, doi: http://dx.doi.org/10.1088/1755-1315/802/1/012059
K. Sharir, G. T. Lai, N. Simon, L. K. Ern, M. A. Talip, and R. Roslee, “Assessment of Flood Susceptibility Analysis Using Analytical Hierarchy Process (AHP) in Kota Belud Area, Sabah, Malaysia,” IOP Conf. Ser. Earth Environ. Sci., vol. 1103, no. 1, 2022, doi: http://dx.doi.org/10.1088/1755-1315/1103/1/012005
T. H. Tam et al., “Flood hazard assessment using design rainfall under climate change scenarios in the Kelantan River Basin, Malaysia,” Int. J. Disaster Resil. Built Environ., 2023, doi: http://dx.doi.org/10.1108/IJDRBE-05-2022-0048
F. S. Buslima, R. C. Omar, T. A. Jamaluddin, and H. Taha, “Flood and flash flood geo-hazards in Malaysia,” Int. J. Eng. Technol., vol. 7, no. 4, pp. 760–764, 2018, doi: http://dx.doi.org/10.14419/ijet.v7i4.35.23103
D. D’Ayala et al., “Flood Vulnerability Assessment of Urban Traditional Buildings in Kuala Lumpur, Malaysia,” Nat. Hazards Earth Syst. Sci., pp. 1–30, 2020, doi: http://dx.doi.org/10.5194/nhess-2020-96
H. S. Rosmadi, M. F. Ahmed, M. Bin Mokhtar, and C. K. Lim, “Reviewing Challenges of Flood Risk Management in Malaysia,” Water (Switzerland), vol. 15, no. 13, Jul. 2023, doi: http://dx.doi.org/10.3390/W15132390
L. Tascón-González, M. Ferrer-Julià, M. Ruiz, and E. García-Meléndez, “Social vulnerability assessment for flood risk analysis,” Water (Switzerland), vol. 12, no. 2, 2020, doi: http://dx.doi.org/10.3390/w12020558
G. Wang et al., “Flood risk assessment based on fuzzy synthetic evaluation method in the beijing-tianjin-hebei metropolitan area, China,” Sustain., vol. 12, no. 4, 2020, doi: http://dx.doi.org/10.3390/su12041451
P. T. Nastos et al., “Risk management framework of environmental hazards and extremes in Mediterranean ecosystems,” Nat. Hazards Earth Syst. Sci., vol. 21, no. 6, pp. 1935–1954, 2021, doi: http://dx.doi.org/10.5194/nhess-21-1935-2021
G. Wang, L. Liu, P. Shi, G. Zhang, and J. Liu, “Flood risk assessment of metro system using improved trapezoidal fuzzy ahp: A case study of Guangzhou,” Remote Sens., vol. 13, no. 24, pp. 1–31, 2021, doi: http://dx.doi.org/10.3390/rs13245154
T. R. Bhuiyan, A. Er, N. Muhamad, and J. Pereira, “The socioeconomic impact of climate-related hazards: flash flood impact assessment in Kuala Lumpur, Malaysia,” Nat. Hazards, vol. 109, pp. 1509–1538, 2021, doi: http://dx.doi.org/10.1007/s11069-021-04887-3
N. Hidayah Ishak and A. Mustafa Hashim, “Dam pre-release as an important operation strategy in reducing flood impact in Malaysia,” E3S Web Conf., vol. 34, p. 2017, 2018, doi: http://dx.doi.org/10.1051/e3sconf/20183402017
H. Nasiri, M. J. M. Yusof, T. A. M. Ali, and M. K. B. Hussein, “District flood vulnerability index: urban decision-making tool,” Int. J. Environ. Sci. Technol., vol. 16, no. 5, pp. 2249–2258, 2019, doi: http://dx.doi.org/10.1007/s13762-018-1797-5
N. S. Romali and Z. Yusop, “Flood damage and risk assessment for urban area in Malaysia,” Hydrol. Res., vol. 52, no. 1, pp. 142–159, Jul. 2021, doi: http://dx.doi.org/10.2166/NH.2020.121
A. Mustafa et al., “Effects of spatial planning on future flood risks in urban environments,” J. Environ. Manage., vol. 225, no. July, pp. 193–204, 2018, doi: http://dx.doi.org/10.1016/j.jenvman.2018.07.090
M. Abdulrazzak et al., “Flash flood risk assessment in urban arid environment: case study of Taibah and Islamic universities’ campuses, Medina, Kingdom of Saudi Arabia,” Geomatics, Nat. Hazards Risk, vol. 10, no. 1, pp. 780–796, Jan. 2019, doi: http://dx.doi.org/10.1080/19475705.2018.1545705
J. Jia, X. Wang, N. A. M. Hersi, W. Zhao, and Y. Liu, “Flood-Risk Zoning Based on Analytic Hierarchy Process and Fuzzy Variable Set Theory,” Nat. Hazards Rev., vol. 20, no. 3, pp. 1–8, 2019, doi: http://dx.doi.org/10.1061/(asce)nh.1527-6996.0000329
R. Minglei et al., “Identification of the inter-basin water diversion project-effected local flood risk factor by using the fishbone-diagram method,” IOP Conf. Ser. Earth Environ. Sci., vol. 826, no. 1, p. 12011, Jul. 2021, doi: http://dx.doi.org/10.1088/1755-1315/826/1/012011
S. Perveen and L. A. James, “Scale invariance of water stress and scarcity indicators: Facilitating cross-scale comparisons of water resources vulnerability,” Appl. Geogr., vol. 31, no. 1, pp. 321–328, 2011, doi: http://dx.doi.org/10.1016/j.apgeog.2010.07.003
C. Robinson, S. Lindley, and S. Bouzarovski, “The Spatially Varying Components of Vulnerability to Energy Poverty,” Ann. Am. Assoc. Geogr., vol. 109, no. 4, pp. 1188–1207, 2019, doi: http://dx.doi.org/10.1080/24694452.2018.1562872
B. T. Pham et al., “GIS based hybrid computational approaches for flash flood susceptibility assessment,” Water (Switzerland), vol. 12, no. 3, pp. 1–30, 2020, doi: http://dx.doi.org/10.3390/w12030683
C. Agonafir, T. Lakhankar, R. Khanbilvardi, N. Krakauer, D. Radell, and N. Devineni, “A review of recent advances in urban flood research,” Water Secur., vol. 19, no. July, p. 100141, 2023, doi: http://dx.doi.org/10.1016/j.wasec.2023.100141
W. C. Liu, T. H. Hsieh, and H. M. Liu, “Flood risk assessment in urban areas of southern Taiwan,” Sustain., vol. 13, no. 6, 2021, doi: http://dx.doi.org/10.3390/su13063180
S. C. Ward and C. B. Chapman, “Risk-management perspective on the project lifecycle,” Int. J. Proj. Manag., vol. 13, no. 3, pp. 145–149, 1995, doi: http://dx.doi.org/10.1016/0263-7863(95)00008-E
J. Westland, The Project Management Lifecycle. 2006. doi: http://dx.doi.org/10.1002/9781118122587.ch2
C. Yong-Qiang, J. Hu, and P. Mo, “The development of the lifecycle function model by IDEFO for construction projects,” 2008 Int. Conf. Wirel. Commun. Netw. Mob. Comput. WiCOM 2008, pp. 1–4, 2008, doi: http://dx.doi.org/10.1109/WiCom.2008.1761
A. Ghorbani, “A Review of Successful Construction Project Managers’ Competencies and Leadership Profile,” J. Rehabil. Civ. Eng., vol. 11, no. 1, pp. 76–95, 2023, doi: http://dx.doi.org/10.22075/JRCE.2022.24638.1560
M. A. R. Shah, A. Rahman, and S. H. Chowdhury, “Assessing sustainable development of flood mitigation projects using an innovative sustainability assessment framework,” Sustain. Dev., vol. 28, no. 5, pp. 1404–1417, 2020, doi: http://dx.doi.org/10.1002/sd.2094
E. Yildirim and I. Demir, “An Integrated Flood Risk Assessment and Mitigation Framework: A Case Study for Middle Cedar River Basin, Iowa, US,” Int. J. Disaster Risk Reduct., vol. 56, no. August 2020, p. 102113, 2021, doi: http://dx.doi.org/10.1016/j.ijdrr.2021.102113
M. L. Ralph Levene, “Project Risk Management,” vol. 34, no. 1987, p. 2014, 2015.
Vlăduț-Severian IACOB, “Risk Management and Evaluation and Qualitative Method within the Projects,” Ecoforum, vol. 3, no. 1, pp. 60–67, 2014.
S. Iqbal, R. M. Choudhry, K. Holschemacher, A. Ali, and J. Tamošaitienė, “Risk management in construction projects,” Technol. Econ. Dev. Econ., vol. 21, no. 1, pp. 65–78, 2015, doi: http://dx.doi.org/ 10.3846/20294913.2014.994582
A. – M. Manta, C. Dima, and M. N. Păcurari, “Risk Management Planning in a Construction Project,” Sci. Bull. Politeh. Univ. Timişoara Trans. Eng. Manag., vol. 4, no. 2, pp. 20–28, 2023, doi: http://dx.doi.org/10.59168/orbr6045
W. Black, “Investigating a complex systems theory approach to controlling risk within complex projects,” 2023, [Online]. Available: https://eprints.qut.edu.au/240007
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Mohammad Syamsyul Hairi Saad, Mohamad Idris Ali, Putri Zulaiha Razi, Noram Irwan Ramli, Ramadhansyah Putra Jaya (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.










