Soil Stabilization Using Xanthan Gum: An Eco-Friendly Approach to Improve Peat Soil Properties

Authors

  • Haspina Sulaiman Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia Author
  • Suzielahyati Yahya Department of Civil Engineering, Politeknik Sultan Idris Shah (PSIS), 45100 Sg Ayer Tawar, Selangor,Malaysia Author
  • Nur Alya Amirah Mohd Amin Department of Civil Engineering, Politeknik Sultan Idris Shah (PSIS), 45100 Sg Ayer Tawar, Selangor,Malaysia Author

DOI:

https://doi.org/10.70028/dcea.v1i2.34

Keywords:

peat soil, xanthan gum, biopolymer, soil stabilization, moisture content, plasticity, compaction

Abstract

Peat soil presents significant challenges in geotechnical engineering due to its high moisture content, low shear strength, and high compressibility, making it unsuitable for construction. Traditional stabilization methods such as cement and lime have been widely used but raise environmental concerns due to their high carbon emissions. This study explores the effectiveness of xanthan gum, a biodegradable biopolymer, as an alternative stabilizing agent for peat soil. The research aims to assess its impact on moisture content regulation, plasticity behavior, compaction characteristics, and overall soil stability. A series of laboratory experiments, including Atterberg limits tests, moisture content analysis, and compaction tests, were conducted to evaluate the engineering properties of xanthan gum-treated peat soil. Three xanthan gum concentrations (0%, 2%, and 4% by weight) were tested to determine the optimal dosage for soil stabilization. The results indicate that xanthan gum significantly reduces moisture content, with a decrease from 135.42% in untreated soil to 39.5% at 4% xanthan gum concentration. The liquid limit and plastic limit increased, indicating enhanced soil cohesion and workability. Compaction tests revealed that while 2% xanthan gum resulted in lower dry density, 4% xanthan gum improved compaction efficiency, suggesting an optimal concentration range for stabilization. The study confirms that xanthan gum is an effective, sustainable alternative to traditional soil stabilizers, providing significant benefits in peat soil stabilization. However, further research is needed to investigate its long-term durability under environmental variations, large-scale field applications, and hybrid stabilization techniques. By addressing these challenges, xanthan gum could become a mainstream solution for sustainable geotechnical engineering applications.

Downloads

Download data is not yet available.

References

A. Amaludin, H. Asrah, H. Mohamad, H. Amaludin, & N. Amaludin, “Physicochemical and microstructural characterization of klias peat, lumadan pofa, and ggbfs for geopolymer based soil stabilization”, Hightech and Innovation Journal, vol. 4, no. 2, p. 327-348, 2023, doi: http://dx.doi.org/10.28991/hij-2023-04-02-07

A. Zainorabidin, S. Zolkefle, A. Siang, H. Mohamad, & S. Razali, “Comparison study of the dynamic loading characteristics between peat and sand based on its physical properties”, Applied Mechanics and Materials, vol. 773-774, p. 1460-1465, 2015, doi: http://dx.doi.org/10.4028/www.scientific.net/amm.773-774.1460

J. Warburton, “Chapter 9 peat hazards: compression and failure”, Geological Society London Engineering Geology Special Publications, vol. 29, no. 1, p. 243-257, 2020. doi: http://dx.doi.org/10.1144/egsp29.9

Z. Yusof, A. Zainorabidin, M. Talib, M. Dan, F. Pakir, & N. Noh, “Effect of curing time on compressive strength performance of coconut shell charcoal ash (csca) and fly ash stabilized peat soil”, Iop Conference Series Earth and Environmental Science, vol. 1249, no. 1, p. 012040, 2023, doi: http://dx.doi.org/10.1088/1755-1315/1249/1/012040

A. Mahmod, S. Mohd, M. Masirin, S. Tajudin, I. Bakar, A. Zainorabidinet al., “Construction of buildings on peat: case studies and lessons learned”, Matec Web of Conferences, vol. 47, p. 03013, 2016. doi: http://dx.doi.org/10.1051/matecconf/20164703013

Z. Rahman, J. Lee, S. Rahim, T. Lihan, & W. Idris, “Application of gypsum and fly ash as additives in stabilization of tropical peat soil”, Journal of Applied Sciences, vol. 15, no. 7, p. 1006-1012, 2015, doi: http://dx.doi.org/10.3923/jas.2015.1006.1012

A. Hauashdh, R. Mohamed, J. Jailani, & J. Rahman, “Stabilization of peat soil using fly ash, bottom ash and portland cement: soil improvement and coal ash waste reduction approach”, Iop Conference Series Earth and Environmental Science, vol. 498, no. 1, p. 012011, 2020, doi: http://dx.doi.org/10.1088/1755-1315/498/1/012011

N. Yunus, M. Hasni, H. Mazlan, B. Othman, & D. Hasbollah, “Enhancing the compaction characteristics of peat soil through ground granulated blast furnace slag (ggbs) stabilisation”, Construction, vol. 3, no. 2, p. 223-229, 2023, doi: http://dx.doi.org/10.15282/construction.v3i2.9744

Y. Guo, J. Cao, H. Sun, W. Ding, G. Hua, W. Weiet al., “Effect of ultrafine cement (ufc) on the corrosion resistance of cement soil in peat soil environment”, Materials, vol. 16, no. 16, p. 5520, 2023, doi: http://dx.doi.org/10.3390/ma16165520

J. Cao, F. Liu, Z. Song, W. Ding, Y. Guo, J. Liet al., “Effect of ultra-fine cement on the strength and microstructure of humic acid containing cemented soil”, Sustainability, vol. 15, no. 7, p. 5923, 2023, doi: http://dx.doi.org/10.3390/su15075923

S. Gowthaman, M. Chen, K. Nakashima, & S. Kawasaki, “Effect of scallop powder addition on micp treatment of amorphous peat”, Frontiers in Environmental Science, vol. 9, 2021, doi: http://dx.doi.org/10.3389/fenvs.2021.690376

E. Rikmann, I. Zekker, T. Teppand, V. Pallav, M. Shanskiy, U. Mäeorget al., “Relationship between phase composition and mechanical properties of peat soils stabilized using oil shale ash and pozzolanic additive”, Water, vol. 13, no. 7, p. 942, 2021, doi: http://dx.doi.org/10.3390/w13070942

J. Cao, S. Huang, W. Liu, C. Kong, Y. Gao, & F. Liu, “Study on simulation test of peat soil environment in dianchi lake”, Advances in Civil Engineering, vol. 2022, no. 1, 2022, doi: http://dx.doi.org/10.1155/2022/1437733

M. Chen, “Evaluating mechanical strength of peat soil treated by fiber incorporated bio-cementation”, International Journal of Geomate, vol. 20, no. 78, 2021, doi: http://dx.doi.org/10.21660/2021.78.gx162

X. Li, M. Yang, W. Li, & H. Zhang, “Experimental investigation of consolidated undrained shear behavior on peaty soil in dian-chi, china”, Sustainability, vol. 14, no. 21, p. 14618, 2022, doi: http://dx.doi.org/10.3390/su142114618

A. Ghofur, S. Syamsuri, A. Mursadin, A. Nugroho, & A. Legowo, “Implementation peat soil adsorbent & variation of filter for reduce emission improvement from motor vehicle”, Eastern-European Journal of Enterprise Technologies, vol. 1, no. 10 (121), p. 27-36, 2023, doi: http://dx.doi.org/10.15587/1729-4061.2023.273790

F. Yulianto, “Parameters changes of stabilized fibrous peat with eviromentally friendly materials due to water filtration from the surroundings on different area of stabilization”, International Journal of Geomate, vol. 23, no. 99, 2022, doi: http://dx.doi.org/10.21660/2022.99.3555

J. Richards and P. Olivas, “A common‐mesocosm experiment recreates sawgrass (cladium jamaicense) phenotypes from everglades marl prairies and peat marshes”, American Journal of Botany, vol. 107, no. 1, p. 56-65, 2019, doi: http://dx.doi.org/10.1002/ajb2.1411

P. Bagheri, I. Gratchev, & M. Rybachuk, “Effects of xanthan gum biopolymer on soil mechanical properties”, Applied Sciences, vol. 13, no. 2, p. 887, 2023, doi: http://dx.doi.org/10.3390/app13020887

J. Reddy and V. B.J.S., “Effect of xanthan gum biopolymer on dispersive properties of soils”, World Journal of Engineering, vol. 17, no. 4, p. 563-571, 2020, doi: http://dx.doi.org/10.1108/wje-05-2020-0152

A. Soldo and M. Miletić, “Study on shear strength of xanthan gum-amended soil”, Sustainability, vol. 11, no. 21, p. 6142, 2019, doi: http://dx.doi.org/10.3390/su11216142

Y. Sadek, T. Rikioui, T. Abdoun, & A. Dadi, “Influence of compaction energy on cement stabilized soil for road construction”, Civil Engineering Journal, vol. 8, no. 3, p. 580-594, 2022, doi: http://dx.doi.org/10.28991/cej-2022-08-03-012

J. Jang, “A review of the application of biopolymers on geotechnical engineering and the strengthening mechanisms between typical biopolymers and soils”, Advances in Materials Science and Engineering, vol. 2020, no. 1, 2020, doi: http://dx.doi.org/10.1155/2020/1465709

A. Soldo, M. Miletić, & M. Auad, “Biopolymers as a sustainable solution for the enhancement of soil mechanical properties”, Scientific Reports, vol. 10, no. 1, 2020, doi: http://dx.doi.org/10.1038/s41598-019-57135-x

S. Lee, I. Chang, M. Chung, Y. Kim, & J. Kee, “Geotechnical shear behavior of xanthan gum biopolymer treated sand from direct shear testing”, Geomechanics and Engineering, vol. 12, no. 5, p. 831-847, 2017, doi: http://dx.doi.org/10.12989/gae.2017.12.5.831

C. Chen, L. Wu, M. Perdjon, X. Huang, & Y. Peng, “The drying effect on xanthan gum biopolymer treated sandy soil shear strength”, Construction and Building Materials, vol. 197, p. 271-279, 2019, doi: http://dx.doi.org/10.1016/j.conbuildmat.2018.11.120

J. Im, T. Tran, I. Chang, & G. Cho, “Dynamic properties of gel-type biopolymer-treated sands evaluated by resonant column (rc) tests”, Geomechanics and Engineering, vol. 12, no. 5, p. 815-830, 2017, doi: http://dx.doi.org/10.12989/gae.2017.12.5.815

S. K, “Soil stability: an experimental investigation utilizing bagasse ash in combination with guar gum and xanthan gum biopolymers”, tjjpt, vol. 44, no. 5, p. 1162-1167, 2023, doi: http://dx.doi.org/10.52783/tjjpt.v44.i5.2744

B. Zhang, K. Wen, J. Li, & F. Amini, “Investigation of bridge scour mitigation with nature binding materials: biopolymers”, Transportation Research Record Journal of the Transportation Research Board, vol. 2678, no. 10, p. 1015-1024, 2024, doi: http://dx.doi.org/10.1177/03611981241236186

H. Yasin, M. Suresh, G. Abebe, & S. Fufa, “Results on certain biopolymers using m‐polynomial and nm‐polynomial of topological indices”, Computational and Mathematical Methods in Medicine, vol. 2023, no. 1, 2023, doi: http://dx.doi.org/10.1155/2023/4668505

X. Rong, S. Deng, B. Liang, J. Zhuang, Y. Yu, & Z. Wu, “Mechanical behavior and strengthening mechanism of loess stabilized with xanthan gum and guar gum biopolymers”, Materials Research Express, vol. 11, no. 10, p. 105305, 2024, doi: http://dx.doi.org/10.1088/2053-1591/ad832c

L. Wang, Z. Weng, Q. Liu, T. Wang, X. Pan, G. Liet al., “Improving the mechanical properties of red clay using xanthan gum biopolymer”, International Journal of Polymer Science, vol. 2021, p. 1-16, 2021, doi: http://dx.doi.org/10.1155/2021/1535772

S. Lee, M. Chung, H. Park, K. Song, & I. Chang, “Xanthan gum biopolymer as soil-stabilization binder for road construction using local soil in sri lanka”, Journal of Materials in Civil Engineering, vol. 31, no. 11, 2019, doi: http://dx.doi.org/10.1061/(asce)mt.1943-5533.0002909

P. Bagheri, I. Gratchev, & M. Rybachuk, “Effects of xanthan gum biopolymer on soil mechanical properties”, Applied Sciences, vol. 13, no. 2, p. 887, 2023, doi: http://dx.doi.org/10.3390/app13020887

I. Chang, Y. Kwon, J. Im, & G. Cho, “Soil consistency and interparticle characteristics of xanthan gum biopolymer–containing soils with pore-fluid variation”, Canadian Geotechnical Journal, vol. 56, no. 8, p. 1206-1213, 2019, doi: http://dx.doi.org/10.1139/cgj-2018-0254

J. Wan, F. Ouyang, H. Xiao, L. Wang, & G. Tao, “Experimental study on the physical and mechanical properties of modified clay using xanthan gum and guar gum composite materials”, Sustainability, vol. 16, no. 13, p. 5432, 2024, doi: http://dx.doi.org/10.3390/su16135432

J. Ni, S. Li, L. Ma, & X. Geng, “Performance of soils enhanced with eco-friendly biopolymers in unconfined compression strength tests and fatigue loading tests”, Construction and Building Materials, vol. 263, p. 120039, 2020, doi: http://dx.doi.org/10.1016/j.conbuildmat.2020.120039

S. Lee, I. Chang, M. Chung, Y. Kim, & J. Kee, “Geotechnical shear behavior of xanthan gum biopolymer treated sand from direct shear testing”, Geomechanics and Engineering, vol. 12, no. 5, p. 831-847, 2017, doi: http://dx.doi.org/10.12989/gae.2017.12.5.831

B. Zhang, K. Wen, J. Li, & F. Amini, “Investigation of bridge scour mitigation with nature binding materials: biopolymers”, Transportation Research Record Journal of the Transportation Research Board, vol. 2678, no. 10, p. 1015-1024, 2024, doi: http://dx.doi.org/10.1177/03611981241236186

X. Zhang, W. Cao, & X. Zhang, “Experimental study on mechanical and hydraulic properties of xanthan gum improved low liquid limit silty soil”, Scientific Reports, vol. 14, no. 1, 2024. https://doi.org/10.1038/s41598-024-61875-w

A. Phuong, I. Chang, N. Thanh, & C. Gye-Chun, “Numerical modelling of slope stabilization with xathan gum-treated soil”, Vietnam Journal of Earth Sciences, 2022, doi: http://dx.doi.org/10.15625/2615-9783/17924

R. Jan and S. Sharmila, “Xanthan gum as sustainable biopolymer additive for soil treatment”, International Journal of Recent Technology and Engineering, vol. 8, no. 4, p. 10487-10492, 2019, doi: http://dx.doi.org/10.35940/ijrte.d4234.118419

X. Rong, S. Deng, B. Liang, J. Zhuang, Y. Yu, & Z. Wu, “Mechanical behavior and strengthening mechanism of loess stabilized with xanthan gum and guar gum biopolymers”, Materials Research Express, vol. 11, no. 10, p. 105305, 2024, doi: http://dx.doi.org/10.1088/2053-1591/ad832c

H. Yasin, M. Suresh, G. Abebe, & S. Fufa, “Results on certain biopolymers using m‐polynomial and nm‐polynomial of topological indices”, Computational and Mathematical Methods in Medicine, vol. 2023, no. 1, 2023, doi: http://dx.doi.org/10.1155/2023/4668505

S. Armistead, A. Rawlings, C. Smith, & S. Staniland, “Biopolymer stabilization/solidification of soils: a rapid, micro-macro, cross-disciplinary approach”, Environmental Science & Technology, vol. 54, no. 21, p. 13963-13972, 2020, doi: http://dx.doi.org/10.1021/acs.est.0c02001

P. Bagheri, I. Gratchev, & M. Rybachuk, “Effects of xanthan gum biopolymer on soil mechanical properties”, Applied Sciences, vol. 13, no. 2, p. 887, 2023, doi: http://dx.doi.org/10.3390/app13020887

J. Im, T. Tran, I. Chang, & G. Cho, “Dynamic properties of gel-type biopolymer-treated sands evaluated by resonant column (rc) tests”, Geomechanics and Engineering, vol. 12, no. 5, p. 815-830, 2017, doi: http://dx.doi.org/10.12989/gae.2017.12.5.815

A. Soldo, M. Miletić, & M. Auad, “Biopolymers as a sustainable solution for the enhancement of soil mechanical properties”, Scientific Reports, vol. 10, no. 1, 2020, doi: http://dx.doi.org/10.1038/s41598-019-57135-x

J. Baldovino, O. Calabokis, & M. Saba, “From bibliometric analysis to experimental validation: bibliometric and literature review of four cementing agents in soil stabilization with experimental focus on xanthan gum”, Sustainability, vol. 16, no. 13, p. 5363, 2024, doi: http://dx.doi.org/10.3390/su16135363

A. Soldo and M. Miletić, “Durability against wetting-drying cycles of sustainable biopolymer-treated soil”, Polymers, vol. 14, no. 19, p. 4247, 2022, doi: http://dx.doi.org/10.3390/polym14194247

M. Qureshi, A. Al-Hilly, O. Al-Zeidi, A. Al-Barrami, & A. Al-Jabri, “Vane shear strength of bio-improved sand reinforced with natural fibre”, E3s Web of Conferences, vol. 92, p. 12004, 2019, doi: http://dx.doi.org/10.1051/e3sconf/20199212004

A. Soldo and M. Miletić, “Study on shear strength of xanthan gum-amended soil”, Sustainability, vol. 11, no. 21, p. 6142, 2019, doi: http://dx.doi.org/10.3390/su11216142

A. Correia, J. Caldeira, R. Branco, & P. Morais, “Enhancing the strength of mine residue soil by bioremediation combined with biopolymers”, Applied Sciences, vol. 13, no. 18, p. 10550, 2023, doi: http://dx.doi.org/10.3390/app131810550

B. Fortuna, J. Logar, A. Sorze, F. Valentini, & J. Smolar, “Influence of xanthan gum-based soil conditioners on the geotechnical properties of soils”, Applied Sciences, vol. 14, no. 10, p. 4044, 2024, doi: http://dx.doi.org/10.3390/app14104044

I. Chang and G. Cho, “Geotechnical behavior of a beta-1,3/1,6-glucan biopolymer-treated residual soil”, Geomechanics and Engineering, vol. 7, no. 6, p. 633-647, 2014, doi: http://dx.doi.org/10.12989/gae.2014.7.6.633

J. Ni, G. Hao, J. Chen, L. Ma, & X. Geng, “The optimisation analysis of sand-clay mixtures stabilised with xanthan gum biopolymers”, Sustainability, vol. 13, no. 7, p. 3732, 2021, doi: http://dx.doi.org/10.3390/su13073732

S. Lee, M. Chung, H. M. Park, K.-I. Song, and I. Chang, “Xanthan gum biopolymer as soil-stabilization binder for road construction using local soil in Sri Lanka,” J. Mater. Civ. Eng., vol. 31, no. 11, 2019. [Online]. Available: https://www.researchgate.net/publication/335393440.

B. Zare, M. Mokhtari, and R. Porhoseni, “Effects of xanthan gum and lime on physical properties and mechanical behavior of organic soil,” IJE Transactions A, vol. 36, no. 10, pp. 1758–1772, 2023. [Online]. Available: https://www.ije.ir/article_173875_2bc459e216bcc0d59d72811641ff5949.pdf.

I. Chang, J. Im, A. K. Prasidhi, and G.-C. Cho, “Effects of xanthan gum biopolymer on soil strengthening,” Constr. Build. Mater., vol. 74, pp. 65–72, 2015, doi: http://dx.doi.org/10.1016/j.conbuildmat.2014.10.026.

N. Latifi, S. Horpibulsuk, C. L. Meehan, M. Z. A. Majid, and A. S. A. Rashid, “Xanthan gum biopolymer: an eco-friendly additive for stabilization of tropical organic peat,” Environ. Earth Sci., vol. 75, pp. 1–10, 2016, doi: http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0001706.

Downloads

Published

2025-04-28

Issue

Section

Articles

How to Cite

Soil Stabilization Using Xanthan Gum: An Eco-Friendly Approach to Improve Peat Soil Properties. (2025). Disaster in Civil Engineering and Architecture, 2(1), Pp. 63-79. https://doi.org/10.70028/dcea.v1i2.34

Similar Articles

You may also start an advanced similarity search for this article.