Magnesium Cements as Sustainable Alternatives to Portland Cement: Carbonation Mechanisms, Mechanical Performance, and Environmental Benefits
DOI:
https://doi.org/10.70028/cpir.v1i1.37Keywords:
Magnesium Cements, Carbonation Mechanisms, Mechanical Performance, Environmental Benefits, Sustainable ConstructionAbstract
The construction industry remains one of the major CO₂ emission sources globally because producing Portland cement contributes to about eight percent of total emissions. Sustainable alternatives need development to address climate change effects because limestone calcination produces substantial CO₂ emissions at high energy usage levels. Four types of magnesium cements which include Reactive Magnesia Cement (RMC) Magnesium Phosphate Cement (MPC) Magnesium Oxychloride Cement (MOC) and Magnesium Oxysulfate Cement (MOS) have proven viable alternatives due to their natural carbonation capacity that allows CO₂ absorption. These concrete substitutes deliver better mechanical performance with increased strength together with enhanced durability and fire safety characteristics and they help reduce carbon emissions. The CO₂ sequestration ability of Magnesium Cement increases tremendously through Accelerated Carbonation Curing (ACC) because the process enables formation of stable carbonates like magnesite and nesquehonite. The capture efficiency for CO₂ embodied in RMC reaches 92% while PC captures only 50% thus resulting in improved emissions reduction outcomes. Rapid-setting MPC finds common use for infrastructure repairs because of its exceptional early strength yet MPC and MOC and MOS show top performance as fire-resistant materials and thermal insulation components. MOC and limited large-scale adoption present challenges to full-scale implementation due to their water susceptibility issues. The paper conducts an extensive examination of MC carbonation processes as well as their mechanical properties and environmental benefits while showcasing their viability as sustainable replacement for PC. Future investigations should work on enhancing carbonation process performance while improving water resistance and developing hybrid cement mixtures to quicken the shift toward environmentally sustainable building materials.
Downloads
References
E. de A. T. Possan William; Aleandri, Gustavo A.; Felix, Emerson Felipe; dos Santos, Ana Carolina Parapinski, “CO2 uptake potential due to concrete carbonation: A case study,” Case Stud. Constr. Mater., vol. 6, no. NA, pp. 147–161, 2017, doi: http://dx.doi.org/10.1016/j.cscm.2017.01.007
C. X. Chen Ruochong; Tong, Dan; Qin, Xinying; Cheng, Jing; Liu, Jun; Zheng, Bo; Yan, Liu; Zhang, Qiang, “A striking growth of CO2 emissions from the global cement industry driven by new facilities in emerging countries,” Environ. Res. Lett., vol. 17, no. 4, p. 44007, 2022, doi: http://dx.doi.org/10.1088/1748-9326/ac48b5
L. T. Haselbach Agathe, “Carbon sequestration in concrete sidewalk samples,” Constr. Build. Mater., vol. 54, no. NA, pp. 47–52, 2014, doi: http://dx.doi.org/10.1016/j.conbuildmat.2013.12.055
Z. Z. He Xiaodong; Wang, Junjie; Mu, Mulan; Wang, Yuli, “Comparison of CO2 emissions from OPC and recycled cement production,” Constr. Build. Mater., vol. 211, no. NA, pp. 965–973, 2019, doi: http://dx.doi.org/10.1016/j.conbuildmat.2019.03.289
W. O. A. Alimi Saheed K.; Ahmad, Shamsad; Amao, Abduljamiu O., “Carbon dioxide sequestration characteristics of concrete mixtures incorporating high-volume cement kiln dust,” Case Stud. Constr. Mater., vol. 17, no. NA, pp. e01414–e01414, 2022, doi: http://dx.doi.org/10.1016/j.cscm.2022.e01414
M. R. Schneider M.; Tschudin, M.; Bolio, H., “Sustainable cement production—present and future,” Cem. Concr. Res., vol. 41, no. 7, pp. 642–650, 2011, doi: http://dx.doi.org/10.1016/j.cemconres.2011.03.019
A. M. Bosoaga Ondrej; Oakey, John E., “CO2 Capture Technologies for Cement Industry,” Energy Procedia, vol. 1, no. 1, pp. 133–140, 2009, doi: http://dx.doi.org/10.1016/j.egypro.2009.01.020
S. A. P. Walling John L., “Magnesia-Based Cements: A Journey of 150 Years, and Cements for the Future?,” Chem. Rev., vol. 116, no. 7, pp. 4170–4204, 2016, doi: http://dx.doi.org/10.1021/acs.chemrev.5b00463
W. C. Shen Liu; Li, Qiu; Zhaijun, Wen; Wang, Jing; Yun, Liu; Dong, Rui; Tan, Yu; Chen, Rufa, “Is magnesia cement low carbon? Life cycle carbon footprint comparing with Portland cement,” J. Clean. Prod., vol. 131, no. NA, pp. 20–27, 2016, doi: http://dx.doi.org/10.1016/j.jclepro.2016.05.082
M. A.-T. Liska Abir, “Performance of magnesia cements in pressed masonry units with natural aggregates: Production parameters optimisation,” Constr. Build. Mater., vol. 22, no. 8, pp. 1789–1797, 2008, doi: http://dx.doi.org/10.1016/j.conbuildmat.2007.05.007
J. L. Yang Shaowen; Wang, Liangyong, “Fused magnesia manufacturing process: a survey,” J. Intell. Manuf., vol. 31, no. 2, pp. 327–350, 2018, doi: http://dx.doi.org/10.1007/s10845-018-1448-1
E. V. den H. Gruyaert Philip; De Belie, Nele, “Carbonation of slag concrete: Effect of the cement replacement level and curing on the carbonation coefficient – Effect of carbonation on the pore structure,” Cem. Concr. Compos., vol. 35, no. 1, pp. 39–48, 2013, doi: http://dx.doi.org/10.1016/j.cemconcomp.2012.08.024
D. Z. Xuan Baojian; Poon, Chi Sun, “Assessment of mechanical properties of concrete incorporating carbonated recycled concrete aggregates,” Cem. Concr. Compos., vol. 65, no. NA, pp. 67–74, 2016, doi: http://dx.doi.org/10.1016/j.cemconcomp.2015.10.018
J. S. Zhang Caijun; Li, Yake; Pan, Xiaoying; Poon, Chi Sun; Xie, Zhaobin, “Influence of carbonated recycled concrete aggregate on properties of cement mortar,” Constr. Build. Mater., vol. 98, no. 98, pp. 1–7, 2015, doi: http://dx.doi.org/10.1016/j.conbuildmat.2015.08.087
Z. M. Liu Weina, “Fundamental understanding of carbonation curing and durability of carbonation-cured cement-based composites: A review,” J. CO2 Util., vol. 44, no. NA, pp. 101428-NA, 2021, doi: http://dx.doi.org/10.1016/j.jcou.2020.101428
D. G. Sharma Shweta, “Accelerated carbonation curing of cement mortars containing cement kiln dust: An effective way of CO2 sequestration and carbon footprint reduction,” J. Clean. Prod., vol. 192, no. NA, pp. 844–854, 2018, doi: http://dx.doi.org/10.1016/j.jclepro.2018.05.027
L. C. Wang Liang; Provis, John L.; Tsang, Daniel C.W.; Poon, Chi Sun, “Accelerated carbonation of reactive MgO and Portland cement blends under flowing CO2 gas,” Cem. Concr. Compos., vol. 106, no. NA, pp. 103489-NA, 2020, doi: http://dx.doi.org/10.1016/j.cemconcomp.2019.103489
F. M. Cao Miao; Yan, Peiyu, “Hydration characteristics and expansive mechanism of MgO expansive agents,” Constr. Build. Mater., vol. 183, no. NA, pp. 234–242, 2018, doi: http://dx.doi.org/10.1016/j.conbuildmat.2018.06.164
C. W. Shi Zemei; Cao, Zhijie; Ling, Tung-Chai; Zheng, Jianlan, “Performance of mortar prepared with recycled concrete aggregate enhanced by CO2 and pozzolan slurry,” Cem. Concr. Compos., vol. 86, no. NA, pp. 130–138, 2018, doi: http://dx.doi.org/10.1016/j.cemconcomp.2017.10.013
E. G. C.-G. Soares João, “Carbonation curing influencing factors of Carbonated Reactive Magnesia Cements (CRMC) – A review,” J. Clean. Prod., vol. 305, no. NA, pp. 127210-NA, 2021, doi: http://dx.doi.org/10.1016/j.jclepro.2021.127210
A. E. L. Zarandi Faïçal; Beaudoin, Georges; Plante, Benoît; Sciortino, Michelle, “Nesquehonite as a carbon sink in ambient mineral carbonation of ultramafi c mining wastes,” Chem. Eng. J., vol. 314, no. 314, pp. 160–168, 2017, doi: http://dx.doi.org/10.1016/j.cej.2017.01.003
D. U. Meng Cise; Yang, En-Hua; Qian, Shunzhi, “Recent advances in magnesium-based materials: CO2 sequestration and utilization, mechanical properties and environmental impact,” Cem. Concr. Compos., vol. 138, no. NA, p. 104983, 2023, doi: http://dx.doi.org/10.1016/j.cemconcomp.2023.104983
H. A. H. Abdel-Gawwad Hassan Soltan; Vásquez-García, S. R.; Israde-Alcántara, Isabel; Ding, Yung-Chin; Martínez-Cinco, Marco Antonio; El-Aleem, S. Abd; Khater, Hesham M.; Tawfi k, Taher A.; El-Kattan, Ibrahim M., “Towards a clean environment: The potential application of eco-friendly magnesia-silicate cement in CO2 sequestration,” J. Clean. Prod., vol. 252, no. NA, pp. 119875-NA, 2020, doi: http://dx.doi.org/10.1016/j.jclepro.2019.119875
M. A. C. Haque Bing; Li, Shujin, “Water-resisting performances and mechanisms of magnesium phosphate cement mortars comprising with fly-ash and silica fume,” J. Clean. Prod., vol. 369, no. NA, p. 133347, 2022, doi: http://dx.doi.org/10.1016/j.jclepro.2022.133347
M. A. P. Haque Dong; Chen, Bing, “Effects of Aluminum Silicate on Mechanical Strength and Microstructural Improvement of Magnesium Phosphate Cement Mortar,” J. Mater. Civ. Eng., vol. 32, no. 12, pp. 04020360-NA, 2020, doi: http://dx.doi.org/10.1061/(asce)mt.1943-5533.0003413
M. A. C. Haque Bing, “In vitro and in vivo research advancements on the magnesium phosphate cement biomaterials: A review,” Materialia, vol. 13, no. NA, pp. 100852-NA, 2020, doi: http://dx.doi.org/10.1016/j.mtla.2020.100852
I. M. . D. Power Gregory M.; Francis, Peter S., “Assessing the carbon sequestration potential of magnesium oxychloride cement building materials,” Cem. Concr. Compos., vol. 78, no. NA, pp. 97–107, 2017, doi: http://dx.doi.org/10.1016/j.cemconcomp.2017.01.003
Z. W. Qu Fazhou; Liu, Peng; Yu, Q Qingliang; Brouwers, Hjh Jos, “Super-hydrophobic magnesium oxychloride cement (MOC): from structural control to self-cleaning property evaluation,” Mater. Struct., vol. 53, no. 2, pp. 30–39, 2020, doi: http://dx.doi.org/10.1617/s11527-020-01462-3
P. P. He Chi Sun; Tsang, Daniel C.W., “Effect of pulverized fuel ash and CO 2 curing on the water resistance of magnesium oxychloride cement (MOC),” Cem. Concr. Res., vol. 97, no. NA, pp. 115–122, 2017, doi: http://dx.doi.org/10.1016/j.cemconres.2017.03.005
N. Y. Zhang Hongfa; Ma, Haiyan; Ba, Mingfang; He, Zhimin, “Effects of CO2 Curing on Properties of Magnesium Oxysulfate Cement,” J. Mater. Civ. Eng., vol. 34, no. 12, p. NA-NA, 2022, doi: http://dx.doi.org/10.1061/(asce)mt.1943-5533.0004490
L. G. Qin Xiaojian; Li, Wengui; Ye, Huan, “Modifi cation of Magnesium Oxysulfate Cement by Incorporating Weak Acids,” J. Mater. Civ. Eng., vol. 30, no. 9, pp. 04018209-NA, 2018, doi: 10.1061/(asce)mt.1943-5533.0002418.
Q. S. Li Anshuang; Gao, Xiaojian, “Preparation of durable magnesium oxysulfate cement with the incorporation of mineral admixtures and sequestration of carbon dioxide.,” Sci. Total Environ., vol. 809, no. NA, p. 152127, 2021, doi: http://dx.doi.org/10.1016/j.scitotenv.2021.152127
Q. Z. Li Linchun; Gao, Xiaojian; Zhang, Junyi, “Effect of pulverized fuel ash, ground granulated blast-furnace slag and CO2 curing on performance of magnesium oxysulfate cement,” Constr. Build. Mater., vol. 230, no. NA, pp. 116990-NA, 2020, doi: http://dx.doi.org/10.1016/j.conbuildmat.2019.116990
K. C. Gu Bing; Bi, Wanli; Guan, Yan, “Recycling of waste gypsum in preparation of magnesium oxychloride cement (MOC),” J. Clean. Prod., vol. 313, no. NA, pp. 127958-NA, 2021, doi: http://dx.doi.org/10.1016/j.jclepro.2021.127958
M. X. Ba Tao; He, Zhimin; Wang, Hui; Liu, Junzhe, “Carbonation of magnesium oxysulfate cement and its influence on mechanical performance,” Constr. Build. Mater., vol. 223, no. NA, pp. 1030–1037, 2019, doi: http://dx.doi.org/10.1016/j.conbuildmat.2019.07.341
L. U. Pu Cise, “Investigation of carbonation depth and its influence on the performance and microstructure of MgO cement and PC mixes,” Constr. Build. Mater., vol. 120, no. NA, pp. 349–363, 2016, doi: http://dx.doi.org/10.1016/j.conbuildmat.2016.05.067
H. S. Jang Seungyoung; Lim, Yongtaek, “Carbonation, CO2 sequestration, and physical properties based on the mineral size of light burned MgO using carbonation accelerator,” J. Clean. Prod., vol. 379, no. NA, p. 134648, 2022, doi: http://dx.doi.org/10.1016/j.jclepro.2022.134648
I. K. Q. Jeon Abdul; Kim, Hong Gi, “Influence of carbonation curing on hydration and microstructure of magnesium potassium phosphate cement concrete,” J. Build. Eng., vol. 38, no. NA, pp. 102203-NA, 2021, doi: http://dx.doi.org/10.1016/j.jobe.2021.102203
Y. Gao, “EFFECT OF CARBONISATION ON THE MECHANICAL PROPERTIES AND HYDRATION OF MAGNESIUM AMMONIUM PHOSPHATE CEMENT,” Ceram. - Silikaty, vol. NA, no. NA, pp. 10–18, 2021, doi: http://dx.doi.org/10.13168/cs.2021.0047
L. Z. Mo Feng; Deng, Min; Jin, Fei; Al-Tabbaa, Abir; Wang, Aiguo, “Accelerated carbonation and performance of concrete made with steel slag as binding materials and aggregates,” Cem. Concr. Compos., vol. 83, no. NA, pp. 138–145, 2017, doi: http://dx.doi.org/10.1016/j.cemconcomp.2017.07.018
R. C. Hay Kemal, “Hydration, carbonation, strength development and corrosion resistance of reactive MgO cement-based composites,” Cem. Concr. Res., vol. 128, no. NA, pp. 105941-NA, 2020, doi: http://dx.doi.org/10.1016/j.cemconres.2019.105941
H. G. Zhiqi Yan; Chang, Jun; Bi, Wanli; Zhang, Tingting, “Effect of Carbonation on the Water Resistance of Steel Slag—Magnesium Oxysulfate (MOS) Cement Blends,” Mater. (Basel, Switzerland), vol. 13, no. 21, pp. 5006-NA, 2020, doi: http://dx.doi.org/10.3390/ma13215006
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Md. Saniul Haque Mahi, Md. Hasibul Khan, Abhijit Nath Abhi, Md. Foysal Sheik, Md. Kamal Hossen (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.