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ABSTRACT

Flood risk is an increasingly critical concern in urban development as the frequency and severity
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(2) risk assessment theory, (3) projectlifecycle theory, and (4) risk management theory. These themes
were synthesized to develop a unified conceptual framework that embeds FRM throughout project
planning, design, implementation, and operation. The proposed framework emphasizes early risk
identification, continuous stakeholder engagement, adaptive management, and interdisciplinary
collaboration, enabling proactive integration of FRM into development processes. This novel
approach aligns flood resilience with broader urban sustainability and planning objectives,
offering a practical tool for policymakers, project managers, and urban planners. Future research
should focus on empirical validation and contextual adaptation of the framework across diverse

socio-economic and geographical settings to enhance its global applicability.

Keywords: Flood Risk Management (FRM), Development Projects, Conceptual Framework,

Project Lifecycle Theory, Urban Development Resilience

INTRODUCTION

institutional affiliations.
Flooding is one of the most devastating natural disasters, posing severe

global risks to human life, infrastructure, and economies. In recent decades,
the frequency and intensity of floods have escalated, driven by climate change,
which exacerbates vulnerabilities in developed and developing regions [1].
According to the World Meteorological Organization (2021), climate-related
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disasters, particularly floods, have surged 134% since the 1980s, affecting billions
worldwide. This alarming trend underscores the urgent need for comprehensive
flood risk management (FRM) strategies, particularly in rapidly urbanizing
areas, where the convergence of urban expansion and flood risks intensifies the
potential for catastrophic losses [2].

Unfortunately, many development projects fail to incorporate flood risk
considerations during the planning and execution phases, jeopardizing
sustainability and increasing vulnerability [3].

Urbanization, driven by population growth and economic development,
often occurs in flood-prone regions, further intensifying flood-related risks.
Urban projects often disrupt natural hydrological systems, leading to increased
surface runoff and reduced water absorption [4]. Without integrating flood risk
management from the outset, development projects become more susceptible
to direct and indirect losses from flooding, including infrastructure damage,
economic disruptions, and diminished investor confidence [5].

Reactive approaches to flood risk management, often implemented after
flood events, are less effective and more costly than proactive measures, which
integrate adaptive strategies to account for future climate scenarios [6,7]. Thus,
there is a pressing need for a structured flood risk management framework
embedded in the entire lifecycle of development projects, ensuring flood risks
are mitigated early on. Despite the recognized benefits of embedding flood risk
management in development projects, a significant gap exists in the literature
regarding practical frameworks that facilitate this integration.

While extensive research addresses flood risk management strategies and
urban resilience, few studies offer systematic approaches for incorporating these
strategies across all phases of a project’s lifecycle, from planning and design
to construction and operation [4],[8]. This gap highlights a critical barrier to
effective flood risk mitigation, particularly in rapidly urbanizing areas where
infrastructure development is vulnerable.

This study aims to fill this gap by proposing a conceptual framework
integrating non-structural flood risk management measures into development
projects. Embedding FRM across the full project lifecycle will measurably
increase urban project resilience by improving early risk identification, adaptive
responses, and stakeholder coordination. The framework aims to enhance project
resilience and mitigate flood vulnerabilities by promoting adaptive management,
stakeholder engagement, and aligning flood risk management with broader
project management processes.

MATERIALS AND METHODS
FormuLATION RESEARCH QUESTIONS

The research question guiding this study informed the scoping review: What
are the key components of a conceptual framework linking FRM to development
projects?
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SYSTEMATIC SEARCHING STRATEGIES

The systematic search strategies involved identification, screening, and
eligibility assessment. These phases were conducted to ensure a rigorous
investigation.

IDENTIFICATION

This first phase was conducted to enhance the keywords used in the search
process. Using multiple keywords and databases at this stage was essential to
avoid retrieval bias [9]. The search relied on the main keywords, “flood risk
management”, “flood Risk” , “construction project” and “development projects,”
as well as several related keywords: “conceptual framework,” “construction
management,” “resilience,” and “scoping review.” The basic functions of the
Boolean operator OR or AND and phrasal-level search were deployed whenever
possible. The articles were combined based on two main indexing databases,
Scopus and Google Scholar, and several other journal databases: Science
Direct, Science of the Total Environment, Nature, SSRN Electronic Journal,
Best Evidence of Chinese Education, and Science Insight Education Frontier.
The search process was conducted between May and August 2024. This effort
retrieved 106 potential articles for the scoping review, and no duplicate records
were identified.

SCREENING

Screening was the second step in the systematic search strategy, distinguishing
suitable articles from unsuitable ones for the review. [10] accentuated that any
criteria can be selected by the authors if the criteria can address the research
question. Articles were selected from those published from 2014 to 2024, and
only peer-reviewed articles/documents were selected to ensure article quality.
As [11] prescribed, only articles published in English were reviewed to avoid
confusion, minimize cost, and reduce time consumption. After discarding 66
articles that had failed to meet the criteria, only 40 articles were retained for
the next selection stage.

ErLiGIBILITY

In the eligibility phase, the 40 shortlisted articles were critically examined
to verify their compliance with the predefined inclusion criteria. Abstracts were
reviewed in detail to assess the relevance of each study to the research question,
while full-text screening was conducted for papers whose suitability could not
be determined from the title or abstract alone. Thirteen articles were excluded
at this stage as they did not directly address flood risk within the context of
development projects, were not peer-reviewed, or were published in non-
academic formats. Consequently, 27 studies meeting all inclusion criteria were
retained for the final scoping review.

The systematic review process adhered to the PRISMA 2020 guidelines,
ensuring methodological rigor, transparency, and reproducibility. Figure 1
presents the PRISMA flow diagram summarizing the identification, screening,
eligibility, and inclusion phases. In total, 106 records were initially retrieved
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from major databases, including Scopus, Google Scholar, and ScienceDirect.
Following the screening and eligibility assessments, 27 peer-reviewed studies
were finalized for inclusion in the qualitative synthesis.

Articles retrieved from Scopus, Google Scholar, etc.
(m=106)

|dentification

}_:' Articles ready for screening |

g process ——  Articles excluded due to not aligned

‘E [m=106) with flood risk/development topic
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E Articles ready for eligibility
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-

Articles ready for quality
appraisal process (n= 27)

Mone of the articles were
excluded

l

Articles ready for review
[m=27)

Figure 1. PRISMA flow diagram summarizing the identification, screening, eligibility,
and inclusion phases

DAtA EXTRACTION AND ANALYSIS

The research question guided the data extraction process. All data from the
selected studies were related to flood risk in development projects or projects
related to flood risk management. The conceptual framework is indirectly
considered upon determining their ability to address the research question.
This qualitative study adopted thematic analysis to assess the captured data.
This analysis identified themes based on patterns retrieved from the selected
studies, as well as similarities and correlations between the abstracted data
[12]. At the first stage of the synthesis, data similar or related to each other
were pooled in a specified theme. At this stage, six main themes were identified.
In the second stage, the themes were re-examined to ensure their usefulness
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and accurate representations of the data. During this process, two themes, the
theory of change and the systems approach, were excluded due to their limited
connection with the main research question. The other four retained themes are
the risk-hazard model, risk assessment theory, project lifecycle theory, and risk
management theory.

THE EMERGING THEMES
Risk HAzarp MoODEL

Floods, as one of the most destructive natural disasters, require effective flood
risk management (FRM) strategies, particularly as climate change accelerates
their frequency and intensity. The Risk-Hazard Model provides a comprehensive
framework for managing flood risk through its three core components: hazard,
exposure, and vulnerability. “Hazard” refers to the probability of a flood,
influenced by factors such as climate change, topography, rainfall patterns,
urbanization, and land use changes [13-15]. Climate change, for instance, has
exacerbated extreme weather events like heavy rainfall, increasing the likelihood
of flooding. Structural measures such as levees, dams, and enhanced drainage
systems are commonly used to manage hazards, but they often face criticism
due to high costs, environmental impact, and limited efficacy in extreme flood
events [16,17].

The second component, exposure focuses on identifying populations
and assets at risk of flooding. Factors like population density, land use, and
urbanization are key in determining exposure levels [18,19]. Urbanization has
heightened exposure by concentrating people and infrastructure in flood-prone
areas. Effective exposure management involves limiting development in high-risk
zones and adapting building designs to withstand potential floodwaters. Early
warning systems also play a critical role in mitigating flood risk by facilitating
timely evacuations [20-22]. However, the effectiveness of such systems relies on
accurate forecasting and sufficient community preparedness, which are often
lacking in less developed regions.

The final component, vulnerability, refers to a community’s capacity to
withstand flood impacts, influenced by socioeconomic factors such as poverty,
infrastructure quality, and resource availability [8], [23]. Communities with fewer
resources typically exhibit higher vulnerability due to limited preparedness
and mitigation capabilities. Addressing vulnerability requires a multifaceted
approach that includes upgrading infrastructure, enforcing resilient building
standards, and implementing flood education programs [24-26]. The risk-hazard
model, encapsulated by the equation (1).

Risk = Hazard x Vulnerability (D

Effective flood risk management requires addressing these interconnected
factors to reduce flood risk and enhance community resilience. However,
successful implementation demands a nuanced understanding of local contexts
and the integration of interdisciplinary approaches.
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Risk ASSESSMENT THEORY

A comprehensive framework for flood risk assessment must integrate
multiple dimensions to address the complexity and multifaceted nature of flood
hazards. Effective flood risk management requires considering hydrological,
hydraulic, and socio-economic factors, collectively informing the accurate
evaluation and mitigation of risks. Large-scale modelling, though valuable for
estimating metrics like Expected Annual Damage (EAD) and Expected Annual
Population Affected (EAPA), faces inherent challenges due to uncertainties in
hydrological and hydraulic processes, as well as the characterization of exposed
assets and vulnerabilities [27,28]. These uncertainties underscore the crucial
need for reliable data and consistent assumptions, as inconsistencies can result
in substantial deviations in risk estimates across regions.

The complexity of flood risks, particularly flash floods, is exacerbated by
various factors such as rainfall, soil type, land use, and human activities [29],
[30]. Utilizing geographical detectors to quantify the contribution of these factors
improves the precision of risk distribution analyses, offering a more nuanced
approach to targeting mitigation efforts. However, the dynamic interplay of these
factors, particularly under the influence of climate change and urbanization,
poses a challenge to accurate risk prediction. Integrating hydrodynamic models
with geospatial methodologies has become essential for comprehensive flood
risk assessments, enabling detailed analyses of vulnerabilities across different
geographical scales and enriching our understanding of how flood risks manifest
in diverse contexts [31,32].

Incorporating high-resolution data and advanced tools, such as machine
learning, has significantly improved predictive capabilities [33,34]. However, data
availability and consistency remain challenges, particularly in resource-limited
regions. Adaptive capacity is another critical dimension in flood risk assessment,
especially in urban areas. By analyzing economic, social, and geographic
indicators, adaptive strategies can generate spatial distribution maps that guide
targeted interventions [35]. Empirical studies suggest that adaptive indicators
can reduce flood risk by up to 45% [29]. However, the lag between urban planning
and policymaking, compounded by rapid urbanization and climate change, limits
the implementation of these strategies. This gap highlights the pressing need
for forward-looking policy frameworks that incorporate adaptive capacities into
urban development.

Projects LiFecycLE THEORY

Project lifecycle theory, developed by [36-38], offers a comprehensive
framework for managing construction projects by outlining key stages critical
to project success. [36] Expand the traditional five-stage lifecycle into eight
distinct phases, emphasizing the importance of risk management as an ongoing
process throughout the project. This extension reflects the complexity and
dynamic nature of construction projects, underscoring the need for a proactive
and holistic approach to risk mitigation. [37] complements this by providing
a prescriptive methodology for navigating the project lifecycle, focusing on
meticulous planning and execution. However, while this structured approach
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offers clarity, it may lack the flexibility to handle unpredictable challenges,
particularly in large-scale construction projects. [38] contribute by introducing
a lifecycle function model tailored to construction projects, facilitating real-time
decision-making through integrated management information systems. Despite
its advantages, the practical application of such systems is often hindered by
technological and operational barriers, especially in complex environments
where user adoption and system integration pose significant challenges.

The strength of project lifecycle theory lies in its structured approach, which
systematically addresses the stages of initiation, planning, execution, control,
and closure. Each stage requires specific competencies from project managers,
such as defining objectives, managing stakeholders, and executing plans
precisely. However, the effectiveness of the theory depends on its adaptability
to the unique context of each project. Strict adherence to the model without
considering project-specific risks, external factors, and evolving challenges can
lead to inefficiencies and even project failure. This is especially relevant in flood
risk mitigation projects, where delays or oversights can have a severe impact on
vulnerable communities [39-41]. Thus, while Project Lifecycle Theory provides a
valuable framework, its successful application requires a flexible approach that
allows for continuous adjustment and responsive decision-making throughout
the project lifecycle.

Risk MANAGEMENT THEORY

Risk management theory provides a critical framework for systematically
identifying, analyzing, and addressing risks throughout a project’s lifecycle. This
framework is essential in various industries, including software development,
construction, and international research collaborations, as it helps mitigate
potential risks that could adversely affect project outcomes. As outlined by [36],
[42,43], the theory rests on six key principles: risk identification, assessment,
prioritization, mitigation, monitoring, and communication. These principles
form a structured approach that allows project managers to anticipate and
manage risks, thereby increasing the likelihood of project success. However,
the practical application often faces challenges. Risk identification is essential
but complicated by the unpredictable emergence of new risks, particularly
in complex and dynamic environments [44]. Assessing and prioritizing risks
requires both qualitative and quantitative methods, yet these processes are
frequently hindered by inconsistent data quality and availability. The mitigation
phase, central to the theory, demands strategies that are feasible and adaptable
to changing conditions a requirement that is often difficult to meet in practice
[45]. Continuous monitoring ensures the effectiveness of mitigation strategies,
but it requires sustained resources, which can be a limiting factor in resource-
constrained projects [46]. Communication, crucial for aligning stakeholders
and coordinating actions, is another area where the practical application of the
theory can falter, potentially leading to mismanagement and miscommunication.

In Malaysia’s flood risk management context, risk management theory offers
a comprehensive framework for incorporating proactive risk identification and
mitigation into development projects. This approach is especially important
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in flood-prone regions, where infrastructure resilience is critical. Applying
these principles can significantly reduce the risks associated with flooding,
protecting vulnerable communities and enhancing project sustainability [45,46].
However, successful implementation requires careful adaptation to the region’s
specific geographical and socio-cultural contexts, as well as strong leadership
to navigate unforeseen challenges. Integrating risk management theory with
project lifecycle theory could provide a more holistic approach, ensuring that
development projects are structurally sound and resilient against evolving risks.

SYNTHESIS OF THEMES

The four emergent themes - Risk-Hazard Model, Risk Assessment Theory,
Project Lifecycle Theory, and Risk Management Theory - collectively form the
foundation of the proposed conceptual framework for integrating Flood Risk
Management (FRM) into development projects. Each theme contributes a
distinct but complementary perspective to understanding and mitigating flood
risk throughout the project lifecycle.

The Risk-Hazard Model establishes the starting point by identifying the core
components- risk, hazard, exposure, and vulnerability- that define the context for
subsequent assessment. Building on this, Risk Assessment Theory provides the
analytical tools and quantitative methods to evaluate the likelihood and potential
consequences of flooding. Together, these two themes define the problem space
of FRM within development settings.

Project Lifecycle Theory introduces the process dimension, ensuring that FRM
is embedded across all project phases from initiation and design to construction,
operation, and maintenance rather than being confined to the early planning
stage. Finally, Risk Management Theory operationalizes the integration by
translating assessment outcomes into concrete decision-making steps, including
risk prioritization, mitigation, communication, and continuous monitoring.

When combined, these four themes create a cyclical and adaptive framework
that links scientific risk understanding with project management practice.
The framework emphasizes feedback loops between assessment and action,
enabling decision-makers to update risk strategies as project conditions evolve.
This synthesis not only bridges theoretical constructs from multiple disciplines
but also provides a practical, process-oriented foundation for embedding flood
resilience into urban development projects.

Discussion

Integrating the risk-hazard model, risk assessment theory, project lifecycle
theory, and risk management theory into a single framework provides a
comprehensive basis for embedding flood risk management (FRM) into
development projects. The proposed framework moves beyond descriptive
models by linking risk identification, assessment, mitigation, and monitoring to
distinct phases of project lifecycles. This synthesis ensures that risk management
becomes an ongoing process rather than an isolated pre-construction activity,
aligning with calls in the literature for adaptive, lifecycle-oriented approaches
[2,4,41].
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Compared with previous models such as ISO 31000, the Sendai Framework
for Disaster Risk Reduction, and adaptive pathways planning, the present
framework offers clearer operational guidance at the project level. ISO 31000
emphasizes risk governance but provides limited direction on applying these
principles within specific development stages. The Sendai Framework, while
comprehensive in scope, focuses primarily on national policy instruments rather
than project-level integration. Adaptive pathway models [6] highlight flexibility
and long-term adjustment but often lack the procedural structure required
for construction and development management. The proposed framework
complements these approaches by embedding adaptive decision-making within
project lifecycles, thereby bridging policy intentions and on-site implementation.

For policymakers, the framework supports the design of regulatory
mechanisms that institutionalize FRM across all project phases. By integrating
risk identification, assessment, and mitigation into approval processes,
authorities can reduce vulnerability to climate-related hazards. Governments
can also enhance compliance through financial incentives such as tax relief or
resilience-linked grants. For urban planners, the framework offers practical
tools for incorporating flood risk considerations into spatial and zoning plans,
enabling the identification of high-risk zones and the adoption of adaptive land-
use regulations. This aligns with findings by Sayers et al. [4] and Mustafa et al.
[27], who emphasize spatial integration as a foundation for flood-resilient urban
development. For developers, the framework provides a structured process for
risk-informed project planning, minimizing cost overruns, construction delays,
and exposure to environmental hazards.

Figure 2 illustrates this process-oriented framework, which begins with the
evaluation of exposure and vulnerability and extends through risk assessment,
mitigation, and monitoring. Unlike static Environmental Impact Assessment
(EIA) models, which often treat risk management as a precondition for project
approval, the proposed framework embeds risk assessment and mitigation as
cyclical, adaptive components of project execution and maintenance. The iterative
feedback loops encourage continuous learning and adjustment, consistent with
the adaptive management principles proposed by Rehman et al. [2] and Shah et
al. [40].

Despite these advantages, implementing the framework presents several
challenges. Regulatory barriers remain substantial, as most planning laws are
not designed to mandate dynamic or lifecycle-based FRM. Financial constraints
also limit the adoption of advanced assessment tools, especially in developing
economies. These observations are consistent with those of Nasiri et al. [25] and
Rosmadi et al. [18], who note that institutional inertia and cost constraints are
persistent obstacles to mainstreaming resilience into development. Furthermore,
stakeholder resistance may occur because the framework demands a shift from
traditional, compartmentalized management toward collaborative governance.
Overcoming such challenges will require institutional reforms, interdisciplinary
coordination, and capacity-building initiatives.
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Risk Reduction/Mitigation Measures

Development Approve and
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Figure 2. Proposed conceptual framework for operational flood risk assessment and
risk management for development projects

The discussion also acknowledges key limitations of this study. The framework
was primarily conceptualized and validated using literature focused on flood-
prone regions, which may constrain its applicability to other hazard contexts
such as droughts or heat risks. The framework also assumes the availability of
reliable spatial and hydrological data, which may not exist in all regions. Future
research should therefore include empirical validation through case studies and
pilot testing in diverse geographical settings to assess adaptability, data needs,
and cost-effectiveness. Comparative evaluations across different environmental
hazards would further refine its versatility.

In summary, the proposed framework contributes to the evolving discourse
on resilient urban development by offering an integrative, operational model that
connects theory and practice. By uniting the risk-hazard, assessment, lifecycle,
and management dimensions, it provides a structured pathway for implementing
FRM throughout project lifecycles. While challenges remain particularly in
regulation, finance, and institutional coordination, the framework advances
beyond traditional models by promoting adaptive, continuous, and stakeholder-
centered risk management as a core principle of sustainable development.
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CONCLUSIONS

The proposed conceptual framework integrates the risk-hazard model,
risk assessment theory, project lifecycle theory, and risk management theory,
offering a comprehensive approach to embedding flood risk management (FRM)
into development projects. Each component plays a crucial role: the risk-hazard
model enables the precise identification and analysis of hazards, exposure,
and vulnerability; risk assessment theory provides a structured methodology
for evaluating and prioritizing risks; project lifecycle theory ensures that
risk management is sustained throughout the entire project lifecycle; and
risk management theory facilitates ongoing monitoring, mitigation, and
communication of risks. Together, these elements significantly enhance the
integration of FRM into development planning, contributing to more sustainable
and resilient urban growth.

Future research should explore the application of this framework across
various geographic regions to assess its adaptability and effectiveness in diverse
environmental and socio-economic contexts. Developing practical tools such as
decision-support systems and software platforms will be essential to simplify
and scale the framework’s implementation, especially in regions with limited
technical capacity. Additionally, innovative financing mechanisms such as public-
private partnerships and new insurance models could help overcome the financial
barriers to comprehensive FRM in development projects.

Integrating FRM into development planning is critical to ensuring that urban
growth is sustainable and resilient to environmental challenges. The proposed
framework provides a structured, lifecycle-oriented approach to managing
flood risks and safeguarding communities, infrastructure, and investments.
As urbanization accelerates, particularly in flood-prone areas, this framework
becomes essential for promoting economically viable, environmentally
sustainable, and socially equitable urban development. Further refinement and
widespread implementation of this framework will be key to advancing global
efforts toward resilient urban growth.
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